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a b s t r a c t

This paper presents a fuzzy inference model for predicting rainfall using scan data from the

USDA Soil Climate Analysis Network Station at Alabama Agricultural and Mechanical

University (AAMU) campus for the year 2004. The model further reflects how an expert

would perceive weather conditions and apply this knowledge before inferring a rainfall.

Fuzzy variables were selected based on judging patterns in individual monthly graphs for

2003 and 2004 and the influence of different variables that cause rainfall. A decrease in

temperature (TP) and an increase in wind speed (WS) when compared between the ith and

(i � 1)th day were found to have a positive relation with a rainfall (RF) occurrence in most

cases. Therefore, TP and WS were used in the antecedent part of the production rules to

predict rainfall (RF). Results of the model showed better performance when threshold values

for: (1) relative humidity (RH) of ith day, (2) humidity increase (HI) between the ith and

(i � 1)th day, and (3) product (P) of decrease in temperature (TP) and an increase in wind

speed (WS) were introduced. The percentage of error was 12.35 when compared the

calculated amount of rainfall with actual amount of rainfall.
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1. Introduction

In predicting weather conditions, factors in the antecedent

and consequent parts that exhibit vagueness and ambiguity

are being treated with logic and valid algorithms (Hasan et al.,

1995). Use of fuzzy set theory has been proved by scientists to

be applicable with uncertain, vague and qualitative expres-
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sions of the system. Application of fuzzy set theory in soil,

crop, and water management is still in its infant stage due to

the lack of awareness of the potentials of fuzzy set theory.

Weather forecasting is one of the most important and

demanding operational responsibilities carried out by meteor-

ological services worldwide. It is a complicated procedure that

includes numerous specialized technological fields. The task
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is complicated in the field of meteorology because all decisions

are made within a visage of uncertainty associated with

weather systems. Chaotic features associated with atmo-

spheric phenomena have also attracted the attention of

modern scientists. The drawback of statistical models is

dependence, in most cases, upon several tacit assumptions

regarding the system (Wilks, 1998). Carrano et al. (2004)

compared non-linear regression modeling and fuzzy knowl-

edge-based modeling, and explained that fuzzy models are

most appropriate when subjective and qualitative data are

utilized and the numbers of empirical observations are small.

Brown-Brandl et al. (2003) used four modeling techniques to

predict respiration rate as an indicator of stress in livestock.

Four modeling techniques consisted of two multiple regres-

sion and two fuzzy inference systems. Fuzzy inference models

offered better results than the two multiple regression models

(Brown-Brandl et al., 2003). Fuzzy inference models yield a

lower percentage of error when compared to the linear

multiple regression model (Hasan et al., 1995). Similar

research by Wong et al. (2003) compared the results of fuzzy

rule-based rainfall prediction with an established method

which uses radial basis function networks and orographic

effect. They concluded that fuzzy rule-based methods could

provide similar results from the established method. However,

the method has an advantage of allowing the analyst to

understand and interact with the model using fuzzy rules. Lee

et al. (1998) considered two smaller areas where they assumed

precipitation is proportional to elevation. Predictions of those

two areas were made using a simple linear regression based on

elevation information only. Comparison with the observed

data revealed that the radial basis function (RBF) network

produced better results than the linear regression models.

Hence, considering the advantage of using the concept of

fuzzy logic for predicting rainfall as stated by other research-

ers is justifiable. The advantage of fuzzy inference modeling

can reflect expert knowledge and yield results with precision

and accuracy. In fuzzy rule basics, knowledge acquisition is

the main concern for building an expert system. Knowledge in

the form of IF–THEN rules can be provided by experts or can be

extracted from data. Each rule has an antecedent part and a

consequent part. The antecedent part is the collection of

conditions connected by AND, OR, NOT logic operators and the

consequent part represents its action (Pant and Ashwagosh,

2004). In a fuzzy inference engine, the truth-value for the

premise of each rule is computed and applied to the

conclusion part of each rule. This result is one fuzzy subset

being assigned to each output variable for each rule. For

composite rules usually min–max inference technique is used.

Defuzzification is used to convert fuzzy output sets to a

crisp value. The widely used methods for defuzzification are

center of gravity and mean of maxima.

Generating production rules for fuzzy inference modeling

is cumbersome if they are not derived as they are being

perceived by an expert. Production rules have the form:

IF X is A1 AND Y is B1 THEN Z is C1 (1)

IF X is A2 AND Y is B2 THEN Z is C2 (2)
Here X and Y represent two antecedent variables (the condi-

tional part of the production rule, like TP and WS as explained

above), and Z is the variable yielding the consequent part of

the production rule. A1, A2, B1, B2, C1, and C2 are the linguistic

and vague expressions with ambiguities. Focusing this idea of

production rule, an example for such production rule that can

be employed in the present research is shown as:

IF WP is very high AND TP is lower THEN RF is moderate (3)

Eq. (3) shows the qualitative form of explanation, such as very

high, lower and moderate which are all fuzzy in nature. These

are explained linguistically without specific quantity or as a

crisp value. The relationship of the variables between ante-

cedent and consequent parts represent a production rule in

Eq. (3) based on valid logic. In the complex reality of the world,

it is usually not easy to construct rules due to the limitations of

manipulation and verbalization of experts (Abe and Ming-

Shong, 1995). This method is termed as the fuzzy adaptive

system (FAS).
2. Definitions

2.1. Fuzzy set

Fuzzy sets are the collection of objects with the same

properties, and in crisp sets the objects either belong to the

set or do not. In practice, the characteristic value for an object

belonging to the considered set is coded as 1 and if it is outside

the set then the coding is 0. In crisp sets, there is no ambiguity

or vagueness about each object belongs to the considered set.

On the other hand, in daily life humans are always confronted

with objects that may be similar to one other with quite

different properties. Therefore, uncertainty always arises

concerning the assessment of membership values 0 or 1.

Logically, of course, some of the similar objects may partially

belong to the same set, therefore, an ambiguity emerges in the

decision of belonging or not. In order to alleviate such

situations Zadeh (1965) generalized the crisp set membership

degree as having any value continuously between 0 and 1.

Fuzzy sets are a generalization of conventional set theory. The

basic idea of fuzzy sets is easy to grasp. An object with

membership function 1 belongs to the set with no doubt and

those with 0 membership functions again absolutely do not

belong to the set, but objects with intermediate membership

functions partially belong to the same set. The greater the

membership function, the more the object belongs to the set

(Hasan and Zenkai, 1999).

The membership function of a fuzzy set is a generalization

of the indicator function in classical sets. In fuzzy logic, it

represents the degree of truth as an extension of valuation.

Degrees of truth are often confused with probabilities,

although they are conceptually distinct, because fuzzy truth

represents membership in vaguely defined sets, not likelihood

of some event or condition.

For the universe X and given the membership-degree

function m! [0, 1] the fuzzy set is defined as

A ¼ ðx;mAðxÞÞ x2Xjf g (4)



Fig. 2 – General scheme of a fuzzy system.

a g r i c u l t u r a l w a t e r m a n a g e m e n t 9 5 ( 2 0 0 8 ) 1 3 5 0 – 1 3 6 01352
The following holds good for the functional values of the

membership function mA(x):

mAðxÞ�0 8 x2X (5)

x 2
Su p

X½mAðxÞ� ¼ 1 (6)

2.2. Fuzzy levels

Range between the minimum (Min) and maximum (Max) value

of any fuzzy variable is divided into suitable numbers which

are denoted in ascending order starting from the minimum

(Min) to maximum (Max) value of a fuzzy set. Fig. 1 shows the

range and the fuzzy levels for a fuzzy set of objects, in a

triangular functional diagram. Here the range has been

divided into five fuzzy levels which are NL, NS, ZE, PS, and

PL. A fuzzy inference model consists of three modules. Fig. 2

shows a schematic diagram of steps involved in fuzzy rule-

based system. Definitions and methods of calculations are

presented below.

2.3. Fuzzification

As per Lee (1990), fuzzification is a process which involves the

following:
(1) m
Fig
easures the values of input variables,
(2) p
erforms a scale mapping that transfers the range of

values of input variables into a corresponding universe of

discourse, and
(3) p
erforms the function that converts input data into

suitable linguistic values which may be viewed as labels

of fuzzy sets.

Fig. 1 shows a value of a fuzzy variable x intersecting the

triangles with fuzzy levels of ZE and NS and their respective

membership functions (m) of 0.3 and 0.7. Hence, fuzzification is

the process that involves
(1) i
nputting the value of the fuzzy variable in the universe of

discourse,
. 1 – Triangular functional diagram and method for calculatin
(2) o
g m
btaining the intersecting points on the arms of the

triangles to calculate the fuzzy levels, and
(3) o
btaining the corresponding membership functions (m).

2.4. Min–Max composition

From Fig. 1, it is observed that one fuzzy variable (x) yields two

membership functions (0.3 and 0.7) and their respective fuzzy

levels are NS and ZE. Hence, if there are two fuzzy variables in

the antecedent part, an increase in wind speed and a decrease

in temperature when compared between the ith and (i � 1)th

day, hereafter denoted as WS and TP, respectively, as in Eqs. (7)

and (8) below, there will be four membership functions and

four respective fuzzy levels obtained after fuzzification. The

mathematical method followed by fuzzification is termed as

‘‘min–max composition’’. Considering WS and TP as the two

fuzzy variable inputs and rainfall, hereafter denoted as RF as

the output in each of the production rules:

IF WS is strong and TP is lower THEN RF is moderate (7)

IF WS is strong and TP is moderate THEN RF is moderate (8)

Fuzzification of any of these production rules will yield fuzzy

levels and membership functions as shown in Fig. 3. Here the

values of WS and TP are the two fuzzy variables representing

the antecedent part of a production rule yielding RF as its

consequence that is shown in Fig. 3. Suppose a value of WS

yields the membership function values of 0.2 and 0.8 belong-

ing to the fuzzy levels of ZE and PS, respectively. Similarly, TP,

another fuzzy variable in the antecedent part, yields member-

ship functions values of 0.3 and 0.7 for the fuzzy levels of ZE
embership function (m) and corresponding fuzzy levels.



Fig. 3 – Method for calculating membership function (m) and corresponding fuzzy levels by min–max composition.
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and NS, respectively. Inferring fuzzy level for RF is NS which is

shown in the production rule table of Fig. 3. The following

equation holds good:

IF WS is ZE and TP is NS THEN RF is NS (9)

Fig. 3 shows that a value of membership function m for WS

equals 0.2 with its fuzzy level of ZE. This figure further

shows another value of membership function m for TP

equals 0.7 with its fuzzy level of NS. A value of membership

function for RF is taken to be 0.2 as it is the minimum value

of m between 0.2 and 0.7. A similar mathematical approach

for the same fuzzy variables of ZE for three other production

rules inside the table is presented for RF in Fig. 3. Hence, the

three minimum values 0.7, 0.2, and 0.3 for the same fuzzy

levels of ZE are obtained. Finally, the maximum value 0.7 is

taken out of the three minimum values of 0.7, 0.2, and 0.3

for the next step of the calculation process for defuzzifica-

tion. In an example to show the generalized form of the

equation for min–max composition, two equations for the

four production rules presented in the table written here as

follows:

IF WS is LW1 and TP is LT1 then RF is ZE (10)

IF WS is LW2 and TP is LT2 then RF is ZE (11)

Eqs. (10) and (11) have the same fuzzy levels of ZE for RF.

Hence, the general form of the equation for calculating the

membership function m(ZE)(RF) having the same fuzzy levels ZE

for the consequent part can be shown as
mðZEÞðRFÞ ¼ [
3

i¼1
mðLWiÞðWSÞ \mðTPiÞðLTÞ
h i

(12)

Here, m(ZE)(RF) is the membership function for RF for fuzzy level

ZE, LWis the fuzzy level for WS, LT is the fuzzy level for TP, and\
indicates selecting theminimum value of membership function

out of mðLWiÞðWSÞand mðTPiÞðLTÞ. [ indicates selecting the max-

imum value of the calculated minimum membership function

values. i is the number of production rules having the same

fuzzy levels (here it is ZE). Eq. (12) is valid only when i > 1.

If the fuzzy levels of RF are not the same, then the

membership functions of RF can be calculated by the following

equation:

mðLVÞðRFÞ ¼ mðLWiÞðWSÞ \mðTPiÞðLTÞ (13)

Here, LV, the abbreviation for fuzzy level for RF, is different for

various production rules. In these cases, only the minimum

value of the membership functions between mðLWiÞðWSÞand

mðTPiÞðLTÞ is considered.

2.5. Defuzzification

Defuzzification is the calculation method to yield the

quantified value for the consequent part of a fuzzy statement

described by production rule. Defuzzification performs the

following functions:
(1) a
scalemappingwhichconvertstherangeofvaluesofoutput

variables into corresponding universe of discourse and



Fig. 4 – Calculation methods for defuzzification. (a) Fuzzy levels for rainfall between NL and NS. (b) Fuzzy levels for rainfall

between NS and PS. (c) Fuzzy levels for rainfall between PS and PL.
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(2) y
ields a non-fuzzy control action from an inferred fuzzy

control action.

Fig. 4 illustrates the mathematical procedure followed to

calculate the center of gravity for the defuzzification method.

The following are the possible cases:

Case1. Fuzzy levels of the inference part of production rules

belong to NL and NS with their corresponding values of

membership functions (m).

Case 2. Fuzzy levels of the inference part of production

rules are in the region from NS to PS range with their

corresponding values of membership functions (m).

Case 3. Fuzzy levels of the inference part of production

rules belong to PS and PL with their corresponding values of

membership functions (m).

Considering Fig. 4(a) as a description of the mathematical

procedure for calculating center of gravity for Case 1, the point

of intersections may be defined as P1(X1, 0), P2(X1, Y2),

P3(X3, Y3), P4(X4, Y4) and P5(X5, 0). Let the co-ordinate of

center of gravity for the area bounded by the above five co-

ordinates be P(X, Y). There are two triangles, one which can be

shown by the co-ordinates P1(X1, 0), P2(X1, Y2) and P3(X3, Y3);

and the other triangle can be shown by the co-ordinates

P1(X1, 0), P4(X4, Y4) and P5(X5, 0).

Now, the average of X values in triangle formed by P1(X1, 0),

P2(X1, Y2), and P3(X3, Y3) is

XC1 ¼ X1þ X1þ X3
3:0

(14)
and the Y value in the same triangle formed by P1(X1, 0),

P2(X1, Y2), and P3(X3, Y3) is

YC1 ¼ 0þ Y2þ Y3
3:0

(15)

Similarly, X value in triangle formed by P1(X1, 0), P4(X4, Y4)

and P5(X5, 0) is

XC2 ¼ X1þ X4þ X5
3:0

(16)

and the Y value in the same triangle formed by P1(X1, 0),

P4(X4, Y4) and P5(X5, 0) is

YC2 ¼ 0þ Y4þ 0
3:0

(17)

Area formed by P1(X1, 0), P2(X1, Y2), and P3(X3, Y3) is

area 1 ¼ ðX1� X1ÞðY3� 0Þ � ðX3� X1ÞðY2� 0Þ
2:0

(18)

Similarly, area formed by P1(X1, 0), P4(X4, Y4) and P5(X5, 0) is

area 2 ¼ ðX4� X1Þð0� 0Þ � ðX5� X1ÞðY4� 0Þ
2:0

(19)

Therefore,

total area ¼ area 1þ area 2 (20)
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and the area covered by P1(X1, 0), P2(X1, Y2), and P3(X3, Y3) is

Fraction 1 ¼ area 1
area 1þ area 2

¼ area 1
total area

(21)

and the area covered by P1(X1, 0), P4(X4, Y4) and P5(X5, 0) is

Fraction 2 ¼ area 2
area 1þ area 2

¼ area 2
total area

(22)

Therefore, the co-ordinate for center of gravity is

X ¼ ðXC1� Fraction 1þ XC2� Fraction 2Þ (23)

and

Y ¼ ðYC1� Fraction 1þ YC2� Fraction 2Þ (24)

Considering Fig. 4(b) as describing the mathematical

procedure for calculating the center of gravity for Case 2,

the point of intersections may be defined as P0(X2, Y0),

P1(X1, 0), P2(X2, Y2), P3(X3, Y3), P4(X4, Y4) and P5(X5, 0). Let

the co-ordinate of the center of gravity of the area bounded by

the above five co-ordinates represented by thick lines be

P(X, Y). Let us consider that total area under the thick lines

consists of three small triangles which are as follows:

triangle1 which isformedbythe co-ordinates (P0,P1,andP2),

triangle 2 which is formed by the co-ordinates (P0, P2, and

P3), and

triangle3 which isformedbythe co-ordinates (P0,P4,andP5).

The co-ordinates for triangle 1 are P0(X2, 0), P1(X1, 0), and

P2(X2, Y2); triangle 2 consisting of P0(X2, 0), P2(X2, Y2) and

P3(X3, Y3); and triangle 3 shown with the co-ordinates

P0(X2, 0), P4(X4, Y4) and P5(X5, 0).

Now, the average of X value in triangle formed by P0(X2, 0),

P1(X1, 0), and P2(X2, Y2) is

XC1 ¼ X2þ X1þ X2
3:0

(25)

and the Y value in the same triangle formed by P0(X2, 0),

P1(X1, 0), and P2(X2, Y2) is

YC1 ¼ 0þ 0þ Y2
3:0

(26)

Similarly, X value in triangle formed by P0(X2, 0), P2(X2, Y2)

and P3(X3, Y3) is

XC2 ¼ X2þ X2þ X3
3:0

(27)

and the Y value in the same triangle formed by P0(X2, 0),

P2(X2, Y2) and P3(X3, Y3) is

YC2 ¼ 0þ Y2þ Y3
3:0

(28)
Similarly, X value in triangle formed by P0(X2, 0), P4(X4, Y4)

and P5(X5, 0) is

XC2 ¼ X2þ X4þ X5
3:0

(29)

and the Y value in the same triangle formed by P0(X2, 0),

P4(X4, Y4) and P5(X5, 0) is

YC2 ¼ 0þ Y4þ 0
3:0

(30)

Area formed by P0(X2, 0), P1(X1, 0), and P2(X2, Y2) is

area 1 ¼ ðX1� X2ÞðY2� 0Þ � ðX2� X2Þð0� 0Þ
2:0

(31)

Similarly, area formed by P0(X2, 0), P2(X2, Y2) and P3(X3, Y3) is

area 2 ¼ ðX2� X2ÞðY3� 0Þ � ðX3� X2ÞðY2� 0Þ
2:0

(32)

Similarly, area formed by P0(X2, 0), P4(X4, Y4) and P5(X5, 0) is

area 3 ¼ ðX4� X2Þð0� 0Þ � ðX5� X2ÞðY4� 0Þ
2:0

(33)

Hence,

total area ¼ area 1þ area 2þ area 3 (34)

area covered by P0(X2, 0), P1(X1, 0), and P2(X2, Y2) is

Fraction 1 ¼ area 1
total area

(35)

area covered by P0(X2, 0), P2(X2, Y2) and P3(X3, Y3) is

Fraction 2 ¼ area 2
total area

(36)

and area covered by P0(X2, 0), P4(X4, Y4) and P5(X5, 0) is

Fraction 3 ¼ area 3
total area

(37)

Therefore, the co-ordinate for center of gravity is

X ¼ XC1� Fraction 1þ XC2� Fraction 2þ XC3

� Fraction 3 (38)

and

Y ¼ YC1� Fraction 1þ YC2� Fraction 2þ YC3

� Fraction 3 (39)

Considering Fig. 4(c) for describing the mathematical

procedure for calculating the center of gravity for Case 3,



Fig. 5 – Rainfall pattern against wind and temperature

using USDA scan data from AAMU campus for August
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the point of intersections may be defined as P1(X1, 0),

P2(X2, Y2), P3(X3, Y3), P4(X4, Y4) and P5(X4, 0). Let the co-

ordinate of the center of gravity of the area bounded by the

above five co-ordinates represented by thick lines be P(X, Y).

There are two triangles one of which can be shown by the co-

ordinates P1(X1, 0), P2(X2, Y2) and P5(X4, 0) and the other

triangle can be shown with the co-ordinates P3(X3, Y3),

P4(X4, Y4) and P5(X4, 0).

Now, the average of X value in triangle formed by P1(X1, 0),

P2(X2, Y2) and P5(X4, 0) is

XC1 ¼ X1þ X2þ X4
3:0

(40)

and the Y value in the same triangle formed by P1(X1, 0),

P2(X2, Y2) and P5(X4, 0) is

YC1 ¼ 0þ Y2þ 0
3:0

(41)

Similarly, X value in triangle formed by P3(X3, Y3), P4(X4, Y4)

and P5(X4, 0) is

XC2 ¼ X3þ X4þ X4
3:0

(42)

and the Y value in the same triangle formed by P3(X3, Y3),

P4(X4, Y4) and P5(X4, 0) is

YC2 ¼ Y3þ Y4þ 0
3:0

(43)

Area formed by P1(X1, 0), P2(X2, Y2) and P5(X4, 0) is

area 1 ¼ ðX1� X4ÞðY2� 0Þ � ðX2� X4Þð0� 0Þ
2:0

(44)

Similarly, area formed by P3(X3, Y3), P4(X4, Y4) and P5(X4, 0) is

area 2 ¼ ðX3� X4ÞðY4� 0Þ � ðX4� X4ÞðY3� 0Þ
2:0

(45)

Therefore,

total area ¼ area 1þ area 2 (46)

and the area covered by P1(X1, 0), P2(X2, Y2) and P5(X4, 0) is

Fraction 1 ¼ area 1
area 1þ area 2

¼ area 1
total area

(47)

and the area covered by (X3, Y3), P4(X4, Y4) and P5(X4, 0) is

Fraction 2 ¼ area 2
area 1þ area 2

¼ area 2
total area

(48)

Therefore, the co-ordinate for center of gravity is

X ¼ XC1� Fraction 1þ XC2� Fraction 2 (49)
and

Y ¼ YC1� Fraction 1þ YC2� Fraction 2 (50)

3. Study area

This manuscript presents a fuzzy inference model for

predicting RF using meteorological scan data from the United

States Department of Agriculture (USDA) Soil Climate Analysis

Network Station at Alabama Agricultural and Mechanical

University (AAMU) campus. Meteorological data for 2003 and

2004 were collected and analyzed to determine the variables

that are involved in rainfall occurrences. The Alabama

Mesonet (ALMNet) has been the apex representing 14

combinations of meteorological/soil profile stations and 12

soil profile stations distributed in 11 counties in southern

Tennessee and north and central Alabama. The combination

stations are also part of the USDA and Natural Resources

Conservation Service (NRCS) scan network. Alabama Mesonet

(ALMNet) is controlled and run by the Environment, Soil and

Water Science Program, department of NRES of Alabama

Agricultural and Mechanical University (AAMU).
4. Model development

Although meteorological scan data were collected for 2 years,

2003 and 2004, the model was developed based on year 2004

data. These data were very well organized including soil

related parameters. Data for Bragg Farm and Winfred A.

Thomas Agricultural Research Station (WTARS) were also

collected, monthly data spread sheets were prepared, and

graphs plotted to assist with pre-assessment of analysis and to

generate ideas on climatic behavior. Fig. 5 shows the

characteristics of rainfall for the month of August 2004 using

data from the AAMU campus. Based on the observations of the

graphs prepared for every month during the years 2003 and

2004 for AAMU, Bragg and WTARS farms, it was apparent that

a value of WS and another value of TP when compared

between the ith and (i � 1)th day mostly resulted in a rainfall
2004.
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occurrence. Usually, the characteristic of rainfall occurrence

takes place at the first or second day of the phenomena of

increasing of wind speed and decreasing of temperature.

Hence, the degree of association between WS and TP when

compared between the ith and (i � 1)th day causing RF

occurrences was established. Based on analysis, it was

observed that a RF occurrence has a positive relation with

TP and WS. The observation further revealed that the relation

of RF occurrence with TP and WS reflects expert knowledge.

Hence, the values of WS and TP between ith and (i � 1)th day
Fig. 6 – Model structure and steps followed for timing and

amount of rainfall (RF).
and using them in the fuzzy inference model for the

antecedent part of production rules was considered to be

feasible. Fig. 6 shows the fuzzy inference model structure and

the steps followed to determine the time and amount of RF.

This figure has been prepared by incorporating the considera-

tion of threshold values as described in Fig. 7. In the initial step

of calculation, temperature, wind speed, and relative humidity

were converted to yield the average daily values dividing by 24

(1 day = 24 h) to produce average temperature, average wind

speed and average relative humidity.

A preliminary analysis showed that the variables described

below had a significant influence over RF occurrences:
(a) r
elative humidity (RH) of the ith day,
(b) h
umidity increase (HI) is increase in relative humidity

when compared between the ith and (i � 1)th day, and
(c) p
roduct (P) of TP and WS.

These three variables were taken into consideration and

shown in Fig. 6 in the calculation process with seasonal

variation as shown in tabular form in Fig. 7. This variation was

considered with two threshold values for minimum and

maximum limits as indicated by A and B in Fig. 7:
(a) 1
 January–30 April,
(b) 1
 May–30 September, and
(c) 1
 October–31 December

The threshold values were selected based on the calcula-

tion of results of the model.

In year 2004, there were 6 days out of 132 total rainy days

when the actual amount of RF was more than 50 mm.

Considering the uniformity of data range, and to avoid very

unusual phenomena, the highest volume of RF was considered

to be 50 mm for the maximum value of predicted RF for

defuzzification process (refer Fig. 4). The error was calculated

using the following equation:

1
n

Xn

i¼1

abs
RFai

� RFci

RFai

� �
� 100 (51)

Here, n is the number of days of rainfall occurrences, RFai
is

actual amount of rainfall, and RFci
is the calculated amount of

rainfall.
5. Results and discussion

5.1. Selection of variables

Fuzzy variables of WS and TP between the ith and (i � 1)th day

were good choices for the development of a model for

predicting RF. In reality, fuzzy inference models involve

variables which are perceived by experts as responsible for

the consequence part of the production rule. This means a

fuzzy inference model reflects the scenario of thinking and

decision-making process by expert knowledge. The fuzzy

variables were chosen following the assessment on graphs

prepared on the basis of monthly data from AAMU for 2003



Fig. 7 – Assumptions and threshold values for determining rainfall and no-rainfall occurrences.
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and 2004. Selection of variables of TP and WS between the ith

and (i � 1)th day was considered for this model as a better

approach. The final results indicated that the selection of

these two variables was suitable for the development of the

model and that they showed a good agreement when used in

the antecedent part of the production rule.

5.2. Selection of fuzzy levels for the inference part of the
production rule table

Selection of the fuzzy levels in the inference part of the

production rules is a cumbersome process by trial and error

method. Twenty-five (5 � 5) fuzzy variables for the inference

part are shown in the table in Fig. 3. A method for iterating the

fuzzy variables for RF was followed in the computer program

that selected the one yielding the lowest percentage of error

based on Eq. (51). Depending on the scenario of the system,

fuzzy levels in the inference part of the production rule must

have either an ascending or a descending nature. Skill and

logical approachability are required for determining fuzzy

variables for the consequent part with respect to the fuzzy

variables in the antecedent part of the production rule. The

production rule table shown in Fig. 6 was the best set of fuzzy

levels for RF that yielded the lowest error value of 12.35%.

5.3. Maximum value of RF

Real RF data showed that the maximum RF was 93 mm which

is very unusual and rare for the same location. Moreover, if the
actual amount of RF is considered to be more than 50 mm, the

region of maximum RF (around PL of Fig. 4(c)) will have

unrealistic and lesser density of number of data compared to

density of data in the region of NL, NS, ZE, and PS. Hence,

considering the uniformity of data distribution among the

ranges of NL, NS, ZE, PS, and PL the maximum value of

predicted RF to be 50 mm was justifiable.

5.4. Selection of threshold values for predicted value of RF

Based on the fundamental logic of this research that a value of

WS and another value of TP when compared between the ith

and (i � 1)th day may result in RF, their fuzzy levels,

production rules, and ranges of variables, showed dependency

on three other possible factors. These factors need to be

considered with their threshold values for matching the actual

and calculated amount of RF. These factors are (1) average

daily relative humidity, (2) humidity increase between the ith

and (i � 1)th day, and (3) product (P) of TP and WS between the

ith and (i � 1)th day. Fig. 7 represents two boundary values (A)

and (B) for RH. The zone between (A) and (B) is the range for a

possible RF and the zone beyond (B) is the zone for RF

regardless of any other consideration, whereas the RH of less

than (A) is the zone for no RF. When the value of HI is more

than 10 and it is within the boundary values of (A) and (B) then

it becomes the zone for RF. The zone for the value of HI of less

than 10 is again the zone for a possible RF occurrence. This

possibility is further considered to occur when the value of

product (P) of TP and WS is greater than 4. But if the value of P



Fig. 8 – Actual and calculated amount of rainfall using USDA

scan data from AAMU (1 January–30 April, 2004).

Fig. 9 – Actual and calculated amount of rainfall using

USDA scan data from AAMU (1 May–30 September, 2004).

Fig. 10 – Actual and calculated amount of rainfall using

USDA scan data from AAMU (1 October–31 December,

2004).
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of TP and WS is less than 4, then it was considered that there

would be no RF occurrence. Introducing these three thresh-

old values with consideration of three different seasons as

described in Fig. 7, the model showed good agreement

between the actual amount of RF and predicted value for RF.

Figs. 8–10 show the actual and predicted values of RF using

2004 scan data from the USDA Soil Climate Analysis Network

Station at the AAMU campus. These figures illustrate the

actual amount of RF and predicted value of RF during three

different seasons as considered in this model and explained

in Fig. 7. The figures further show that the timeliness of the

actual amount of RF and predicted value of RF almost

perfectly match, but the amount of RF needs further

research to yield better agreement between actual and

predicted values of RF. Therefore, further research planned
to develop an approach for auto-generation of the produc-

tion rules by iteration method and selecting the particular

production rule table that yields the lowest percentage

of error.
6. Conclusion

Selection of variables and the fundamental logic that the

values TP and WS was an attempt to identify amount of RF

and its time of occurrence as the consequent part of the

fuzzy inference model. Introducing the idea of threshold

values of (a) RH of the ith day, (b) HI when compared between

the ith and (i � 1)th day, and (c) P, product of WS and TP

appeared to be an appropriate attempt for the model to

match the actual RF occurrences. Iteration of the fuzzy levels

with logic both for antecedent and consequent parts was

found to be efficient. Further research has been planned to

attain the maximum possible matches of time and amount

of RF between actual occurrences and the one predicted by

the model.
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